

The Commonwealth of Massachuseus

Department of Environmental Quality Engineering Metropolitan Boston = Northeast Region 5 Commonwealth Avenue

5 Commonwealth Avenue
Woburn, Massachusetts 01801

Recorded to the Commonwealth Avenue

Recorded to the Commonwealth Avenu

MEMORANDUM

TO:

Harish Panchal, DHW, Boston

THRU:

Steve Johnson, DHW, NERO

FROM:

Denise Kokaras, DHW, NERO

DATE:

September 29, 1988

SUBJECT:

NORTH ANDOVER - AT&T, Merrimack Valley Works

1600 Osgood Avenue

EPA ID# MAD001005370 DEQE Case No. 3-174

Introduction

This Preliminary Assessment was completed on AT&T's Merrimack Valley Works, located at 1600 Osgood Ave., North Andover, MA. Studies to date have detected the presence of chlorinated and nonchlorinated solvents in numerous on-site wells.

This site is located in the South Groveland Quadrangle (see Appendix I, p. 1).

History of Site

According to AT&T's consultant, Camp, Dresser & McKee (CDM) the AT&T Merrimack Valley Works facility (AT&T) has manufactured microwave transmission equipment at its present location since 1956. The plant is located on 169 acres in an industrial section of North Andover and is separated from the Merrimack River by a Boston & Maine Railroad (B&M) easement. The City of Methuen is located directly across the river from the plant (see Appendix I, p. 1). Industries in the vicinity of the site include the Lawrence Municipal Airport, the North Andover Landfill, a Borden Chemical Plant, and the Signal-Resco Incinerator facility.

Currently, AT&T employs 7500 people in their manufacturing operations. An additional 1200 employees work at Bell Laboratories, an AT&T subsidiary, at the same location.

Description of Hazardous Conditions, Incidents, Permit Violations

AT&T uses various industrial solvents, etchants, and other chemicals in their manufacturing and assembly processes. AT&T is listed as a generator of hazardous waste (RCRA Generator No. MAD001005370). The following organic materials were typically stored in the past in both underground storage tanks and barrels at the site:

Trichloroethylene
Toluene
Acetone
Varsol
Methyl Chloroform
Gasoline

Ammonia Etchant
Waste Solvents
Waste Acetone & Water Mixture
Spent Ammonia Etchant
Spent Copper Electroplating Solution
Spent Brulin (etchant)

As part of AT&T's ongoing facility modernization operations, below ground storage tanks and associated piping were replaced in 1986 with above ground storage tanks for easier maintenance and monitoring.

On January 1986, AT&T engineers discovered low levels of chlorinated solvents and petroleum hydrocarbons in their production well water. EPA Methods 601, 602 and 624 (see Appendix II, pp. 2-10 for C.T. Main testing results) indicated that production wells 1 and 3 were contaminated with Volatile Organic Compounds (VOCs). Subsequently, CDM was hired by AT&T to investigate the extent of the contamination at the site and to aid in the removal of underground storage tanks from the site.

CDM, in their report entitled "Merrimack Valley Works, Phase II Hydrogeologic Investigation, Final Report, February 1988", identified several potential sources for this groundwater contamination. The following areas were all shown to have VOC soil contamination (see Appendix III, pp. 11-13):

- (1) The Solvent tank farm area which contains nine underground storage tanks. These tanks were removed in 1986-1987.
- (2) The Waste Solvent tank which was removed in 1986.
- (3) The Waste Acetone tank, which was cleaned, filled with grout, and abandoned in place in 1986. This tank could not be removed due to its proximity to underground utility lines.
- (4) The Barrel Pad area, which consisted of an underground waste solvent tank and an above ground barrel storage facility. This facility was removed in 1985.

CDM determined, during their hydrogeologic investigation, that the most significant source of contamination appeared to be the main solvent tank farm area. High levels of VOCs - up to 300 milligrams per liter in total (EPA Method 8240)-were detected in a nearby monitoring well water sample (see Appendix IV, p. 14). Lower levels of VOC contamination were discovered in the vicinity of the waste solvent tank and the waste acetone tank. Groundwater contamination was also detected in the vicinity of the barrel pad area.

Underground Storage Tank Excavations and Closures:

As part of AT&T's tank decommissioning plan, seventeen underground storage tanks were removed and one tank was permanently closed (see Appendix V, p. 15). CDM assisted in the decommissioning of thirteen of these tanks. Their activities are described below:

Upon removal of the 5,000 gallon gasoline tank and the waste oil tank, organic vapor screening of soils in the excavation did not reveal the presence of VOCs. This was confirmed by CDM's laboratory analysis of soil samples using EPA Method 8240.

Due to the proximity of underground piping near the 7500 gallon waste acetone tank, this tank was abandoned in place (with the approval of the North Andover Fire Marshall).

All nine underground solvent tanks and piping in the tank farm area were removed. Soils unearthed during the excavation were also screened for VOCs with an HNU Photoionization Detector (equipped with an 11.7 ev lamp). As required by DEQE, soils registering less than 25 parts per million (ppm-volume per volume headspace as benzene) were reserved for excavation backfill. Soils registering greater than 25 ppm were temporarily stored on a 20 cubic yard container pending laboratory analysis. Composite samples from both soil piles were analyzed at CDM's Boston Laboratory using EPA Method 8240. Soils containing VOCs in concentrations greater than 1 ppm were taken off-site by a licensed hazardous waste hauler to an approved disposal facility. Of the 570 cubic yards of soil unearthed in the tank farm excavation area, approximately 300 cubic yards were transported off-site by Suffolk Services, Inc. to SCA Chemical Services in Model City, New York.

Contaminated water encountered during dewatering activities in the solvent tank farm area was treated with an air stripper which was installed on site. Effluent from the air stripper was discharged to AT&T's Industrial Wastewater Treatment Plant (IWTP) which discharges to the Merrimack River through outfall number OOIA, as part of AT&T's National Pollutant Discharge Elimination System (NPDES) permit (permit MA #0001261).

Groundwater remediation in the tank farm area commenced on February 23, 1987 and continued through May 28, 1987. This short term measure was conducted in order to expedite the removal and treatment of groundwater in the vicinity of the tank farm excavation. At its conclusion, nearly 50,000 gallons of groundwater were recovered and treated. Samples of air stripper influent and effluent (prior to discharge at AT&T's IWTP) were collected on a weekly basis for analysis using EPA Method 624. In summary, Total Toxic Organics (TTO) in the effluent discharge (as expressed by EPA Method 624 since VOCs were the only contaminants present) totalled below 100 ppb for all but one sample. For this one sample, taken March 12, 1987, the results indicated less than 300 ppb TTO, well below the limit of 2130 ppb specified in the NPDES outfall permit.

As part of their Phase I hydrogeologic investigation, CDM installed 21 deep and shallow monitoring wells (see Appendix VI, p. 16, and Appendix VII, p. 17 for monitoring well locations, boring logs, and sampling results). The highest level of VOCs was detected on May 1987 in well MW-25 located near the solvent tank farm area. A total of 208,700 ppb VOCs was detected in this well. The following specific contaminants were found in this well:

47,200 ppb 1,1,1-Trichloroethane

64,330 ppb Trichloroethylene

94,170 ppb Toluene

Overall, VOCs were found in 18 of the 21 wells, ranging in concentrations from 19 ppb to 208,706 ppb total VOCs.

Geologic and Hydrogeologic Information

According to CDM, Merrimack Valley Works property is relatively flat. Drumlins and bedrock-dominated uplands border the site to the east and south.

Based on observations of split spoon boring samples, CDM determined that there were five basic stratigraphic units present at the site: (see Appendix VIII, pp. 18-23)

- A fine silty sand layer extends from the ground surface to 20 to 40 feet below grade at the site.
- Glacial till lies directly above bedrock, and is either exposed at the surface or is covered by a fine sand layer.
- A narrow band of coarse sand and gravel extends non-continuously across the site, and is believed to be a buried post-glacial channel. It is located 60 to 90 feet below grade and is approximately 15 to 30 feet thick above the bedrock surface. This buried channel is highly transmissive.

- A relatively impermeable but noncontinuous layer of silts and clays, of varying thickness, exist across the site. These silty and sandy deposits lie directly below the fine sand and above either the buried channel or bedrock.
- Weathered and fractured silt stone and sandstone bedrock exists throughout the site.

Groundwater was observed to be present in the shallow overburden system, in the buried channel cover, and in the bedrock. CDM observed that the direction of groundwater flow across the site is generally toward the Merrimack River in both the shallow and deep aquifer systems (see Appendix IX, p. 24, 25). They also calculated that horizontal groundwater gradients across the site are approximately 1% (i.e. a 1 foot drop per 100 feet of horizontal distance) in each of the three water bearing formations. They also determined that there are strong vertical gradients across the site, ranging from an 11% downward gradient at MW-3 to a 5% upward gradient at MW-6 (see Appendix X, p. 26).

Overall, based on their field data, CDM concluded that the Merrimack River is a point of groundwater discharge, even for the deep aquifer system. In CDM's opinion, the downward gradient at MW-3 didn't necessarily mean that a significant quantity of water was moving downward at this location since a thirty foot clay layer separates the surficial sand aquifer from the buried channel. In CDM's opinion, this clay lens would most likely inhibit strong vertical flow.

To further define communication between the three principal units, CDM analyzed groundwater in all monitoring and production wells to determine their anion concentrations (see Appendix XI, p. 27).

As a result of this sampling, CDM obtained the following Chloride distribution patterns: chloride concentrations measured in the shallow sand formation were, on average, 100 times higher than chloride concentrations in the weathered bedrock, and approximately 4 times higher than chloride concentrations in the buried channel. In CDM's opinion, the most likely source of the chloride in the sand unit is the road salt used to melt snow and ice during the winter. CDM used this road salt infiltration analysis of groundwater much like a chemical tracer since groundwater typically does not contain high chloride concentrations.

Appendix XI shows the ranges and average chloride concentrations which were measured in the shallow sand unit, the buried channel and the bedrock. CDM determined that the bedrock is essentially free of chlorides (except at monitoring wells MW-10D and MW-5D), while the buried channel contains chloride concentrations approaching those of the shallow sand unit. In CDM's opinion, relatively high chloride levels in the buried channel imply that groundwater flows from the shallow sand unit to the buried channel. This is supported by the presence of downward hydraulic gradients over much of the site. CDM believes low chloride concentrations in the bedrock imply that:

- 1. The bedrock does not receive water from the buried channel or
- 2. That the bedrock has low vertical permeability or
- 3. Till above the bedrock inhibits vertical flow.

A seven day pump test using rising head and constant head recovery tests were conducted on monitoring well MW-11D from November 10-17, 1987 in order to investigate the magnitude and location of hydraulic connections between the shallow sand aquifer and the deep aquifers. MW-11D was selected because it contained no VOCs when last sampled in June of 1987.

This well was pumped at an average rate of 63 gallons per minute (GPM). However, it was not possible for CDM to stop or limit pumping from the AT&T production wells. AT&T operators, however, did attempt to maintain a consistent pumping rate. CDM gauged water levels in all monitoring and production wells eight days prior to the start of the pump test in order to determine the range of the normal fluctuations. In this way, CDM determined that variations in piezometric head of up to one half foot could be attributed to normal operations of the production wells, fluctuations in water levels in the Merrimack River, etc.

Drawdown from this pump test ranged from 4 feet at well MW-9D to .9 feet at .MW-5D at the deeper wells (see Appendix XII, pp. 28-30). All shallow wells showed .5 feet or less of drawdown initially. However, no shallow wells registered more than .1 feet of drawdown after 2 days of pumping. CDM believed this indicated that the deep aquifer was confined but subject to some leakage.

CDM observed that drawdown in the deep aquifer was greater along an axis parallel to the buried channel, supporting their hypothesis that the channel is a narrow, transmissive band. CDM observed that wells in the weathered bedrock also showed this preferential drawdown pattern, indicating that this water flowed along fractures parallel to the channel.

Overall, the site receives surface runoff from a large catchment area that includes drainage from Lake Cochichewick. Onsite streams and storm drains ultimately discharge to the Merrimack River.

Routes of Contamination

CDM detected VOCs in 18 of the 21 onsite monitoring wells VOC contamination was present in both the shallow and deep aquifer systems. CDM did not detect VOCs in the stream that runs south of the facility or in the Merrimack River or river sediments, nor in any of the onsite storm drains they sampled.

Based on field data and on finite element modeling of the three-dimensional groundwater flow across the site, CDM believes that the contaminant plume is preferentially migrating along the transmissive buried channel towards the river. Contaminant flow in the weathered and fractured bedrock also shows preferential migration along a northwest-southeast axis (perpendicular to the river). There is also vertical groundwater flow between the shallow and deep aquifer systems.

Affected Population

Groundwater at the site is contaminated with chlorinated aliphatics and petroleum aromatics. Groundwater discharges to the northwest into the Merrimack River which borders the site. The nearest public water supply is Lake Cochichewick, which is an active water supply for the Town of North Andover. This water supply is located 1 mile south of the site (hydraulically upstream). A secondary pumping station on the Merrimack River, operated by the City of Lawrence, is also located one mile to the southwest of the site (hydraulically upgradient). Chadwick Pond, which is an active water supply for the Town of Haverhill, is located approximately 2 miles northeast of the site. There are no other public water supplies within 4 miles of the site.

The possibility of volatilization of VOCs into nearby enclosures appears minimal since the contaminant plume is located to the north-northwest of the facility and is migrating in a northerly direction towards the river.

Recommendations

The contaminant conditions discussed above constitute a release of hazardous materials under Massachusetts General Law Ch.21E and are being regulated accordingly. To date, CDM has removed the bulk of contaminated soil and all historic underground storage tanks and piping have been removed, or capped and filled. The two existing gasoline replacement tanks are doublewalled UST's equipped with leak detection systems.

AT&T's consultant, CDM, has received approval from DEQE to activate monitoring wells MW-6D and MW-10D as two groundwater extraction wells (see Appendix IX, pp. 24, 25). Influent groundwater will be processed and treated by an airstripper tower. CDM is currently obtaining a formal modification of AT&T's NPDES permit in order to incorporate the discharge of treated water to their Industrial Wastewater Treatment Plant.

It is anticipated that the two groundwater extraction wells will remove most of the contaminated water from both the deep and shallow aquifer system. CDM predicted that the capture zone of this extraction system will encompass all suspected source areas. Three production wells, downgradient of the extraction network, will also be monitored using EPA Method 624 and will serve as a further capture point for any contamination which has migrated past the proposed recovery system.

DEQE expects that this groundwater extraction and treatment system will be implemented by the Fall of 1988. As a result, DEQE recommends a low priority for a site inspection under CERCLA.

DK/ae

-	<u> </u>
V 1	

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT PART 1 - BITE INFORMATION AND ASSESSMENT

	L IDENTIFICATION											
DI BIATE	OZ BITE NUMBÉR											
MA	MAD001005370											

PAR	IT 1 - BITE INFORM	ATION A	nd Assessn	AENT	MA I	MAD00100	<u> 35370</u>
IL BITE NAME AND LOCATION						•	
O1 SITE NAME (Layer manner), or description are of step		02 8TRE	ET, HOUTE NO., OF	PR SPECIFIC LOCATION	IDENTIFIER		
AT&T Merrimack Valley Works		160	0 Osgood 9	Street			
03 CITY		04 STATE	E 05 ZIP COOE	06 COUNTY		07 COUNTY	
North Andover		AM	01845	Essex		009	06
DE COORDINATES LATITUDE	LONGITUDE	+	ــــــــــــــــــــــــــــــــــــــ	L			1.55.
42 4 3 50 . 0 0 71	07 00 0						
10 DERECTIONS TO SITE (Starting from records) public rounds							
From Boston, take Route 93 No. 125 becomes Osgood Street. The							ıțe
III. RESPONSIBLE PARTIES							<u></u>
01 OWNER IT Amount			ET (Business, making, r				
AT&T		1600	Osgood A	.ve.			
oscay North Andover		04 STATE	05 ZIP COO€	06 TELEPHONE	NUMBER		
North Andover		MA	01845	(617 681	1-2650	ı	
OT OPERATOR (# Impure and different from execut)	 	OB STREE	ET (Buerrose, meding, n			•	
OB CITY		1					
00 City		10 STAIL	11 ZIP CODE	12 TELEPHONE I	NUMBER		
13 TYPE OF OWNERSHIP (Check unit)			<u> </u>				
A PRIVATE DB. FEDERAL:		<u> </u>	_ C. STAT	TE DD.COUNTY	🗆 E. MUN	NCIPAL	
D.F. OTHER:	(Věsvch veus)		D:G. UNKA		_ _		
14 OWNER/OPERATOR NOTIFICATION ON FILE (Owner at the sage)	pocey)		4 Ld. W. W ine	——————————————————————————————————————			
OR A. RCRA 3001 DATE RECEIVED: 8 /18/8(U LUS FINICONILISON. M	I EN WAST	TOTE CHICLASS	PATE DECEME			. NONE
IV. CHARACTERIZATION OF POTENTIAL HAZARI	A		E 37 1 % (1947	16 UAIE NECESTRA	MONTH DAY	TEAR .	
	(Check of the apply)						
DI YES DATE 6 /10/87		PA CONTRA FICIAL E			D. OTHER C	ротруктов Вотруктись	
LI NO	ELECTION NAME(S):			· · ·	(Loucey)		
02 SITE STATUS (Oracle and)	03 YEARS OF OPER						
A ACTIVE B. BLACTIVE D.C. UNKNOWN	• 1	1956			UNKNOWN		
04 DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT, IOION		MECOPORG YE	EAR BONG				
	· - — -	5. a		- 1			
Chlorinated and nonchlorinated	i solvents na	ave bee	an detect	ed in numer	cous on-	site	
monitoring wells.							
DS DESCRIPTION OF POTENTIAL HAZARD TO ENVIRONMENT A	TO THE STORY		· · · · · · · · · · · · · · · · · · ·				
VOC contaminated groundwater i		+owar	da tha ne	awho Marris	mack Riv	to r	
VOC COntaminated groundwater .	IS MITGEOTING	TOWAL	15 the nea	grnia merrr.	ildun nu v	er.	
			 		·		
V. PRIORITY ASSESSMENT 11 PRIORITY FOR INSPECTION (Oracle and if high as another its phecial							
A. HIGH Branction required premptly B. MEDRUM Branction required	Ø.C. LOW		or 3 · Description of Paul D. NONE (I) Any hard	artitud Comittons and most E Per action resided, complet	lants)	sa Aprilla	_
VI. INFORMATION AVAILABLE FROM							
O) CONTACT	D2 OF (Agusey/Organs	4 6404)			0	3 TELEPHONE N	NUMBER
Denise Kokaras	DEQE				[(617 935-	-2160
04 PERSON RESPONSIBLE FOR ASSESSMENT	OS AGENCY	OG ORGA	MIZATION	07 TELEPHONE		M DATE	
Denise Kokaras	DEQE	DHW/S	SAC	(617 935	5-2160	9 1261	188 124

POTENTIAL HAZARDOUS WASTE SITE

	-	E٨			. ~	•	***	\sim	
L	N.	L٨	41		L	A	1 14	u	ч
				•••					-

	ra .	11		r assessment Einformation		MA MAI	0001005370
II. WASTE 5	TATES, QUANTITIES, AN	ID CHARACTER					
	STATES (Chece of the apply)	02 WASTE QUANT		03 WASTE CHARACTI	ERISTICS (Check at mark	0011	
() C STADO			of world (purchase)	G A TOXIC C B CORRO C C RADIOA C D PERSIS	L'E SOLU. SIVE L'E SOLU. CTIVE L'E G FLAM	BLE X. I HIGHL TXOUS C: J EXPLO MABLE L: K REAC ABLE L, L INCO	TIVE MPATIBLE
D D OTHER	(Saucey)	NO OF DRUMS				E M NOT	APPLICABLE
HI. WASTE T	YPE				 		
CATEGORY	BUBSTANCE N	AME	01 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS		
SLU	SLUDGE						
OLW	OILY WASTE	•					
SOL	SOLVENTS						
PSO	PESTICIDES						
осс	OTHER ORGANIC CH	EMICALS					
ЮС	INORGANIC CHEMIC		 				
ACD	ACIDS		 				
BAS	BASES				· · · · · · · · · · · · · · · · · · ·		
MES	HEAVY METALS						
IV. HAZARDO	OUS SUBSTANCES (5++ 44)	denda for most frequen	r cred CAS Numberal	<u> </u>			
1 CATEGORY	02 SUBSTANCE NA		O3 CAS NUMBER	04 STORAGE/DISP	OSAL METHOD	05 CONCENTRATION	06 MEASURE OF CONCENTRATION
SOL	l,l,l-Trichloro	ethane	71-55-6				
SOL	richloroepthyle	ene	79-01-6			47.200 67,330	<u>pph</u>
	l,1-Dichloroeth					73	***
	l,l-aichloroetha		75-34-3			218	11
SOL I	Trans-1,2-Dichlo	proethylen				355	111
	Chloroform	22 00 01, 7 2 01	47-66-5	UST		30	"
SOL I	1,1,2,2-Tetrachl	oroethyle	ne 127-18-4				
	Coluene	EOT OC CITY TO	108-88-3	UST		30 94,170	11
				001		34,170	
							
				· · · · · · · · · · · · · · · · · · ·			
	**************************************						-
				······································		· · · · · · · · · · · · · · · · · · ·	
	,						
				DF .		V _ P	
FEEDSTOC	CKS (See Asserted for CAS Aurose)			· · · · · · · · · · · · · · · · · · ·			<u>l.</u>
CATEGORY	OI FEEDSTOCK		OZ CAS NUMBER	CATEGORY	AL STERME		
FOS			UZ CAS HUMBER		01 FEEDSTOO	R NAME	02 CAS NUMBER
FDS	<u> </u>			FDS	 		
FDS				FDS			
FDŞ			<u> </u>	FDS			
				FDS !		1	

Valley Works, North Andover, MA, November, 1986".

CDM, "Final Report Underground Storage Tank Removal Program at AT&T Merrimack Valley Works, North Andover, MA, March 1987".

CDM, "AT&T Merrimack Valley Works Phase II Hydrogeologic Investigation, Final Report and

EPA FORM 2070-12 (7-81)

SEPA

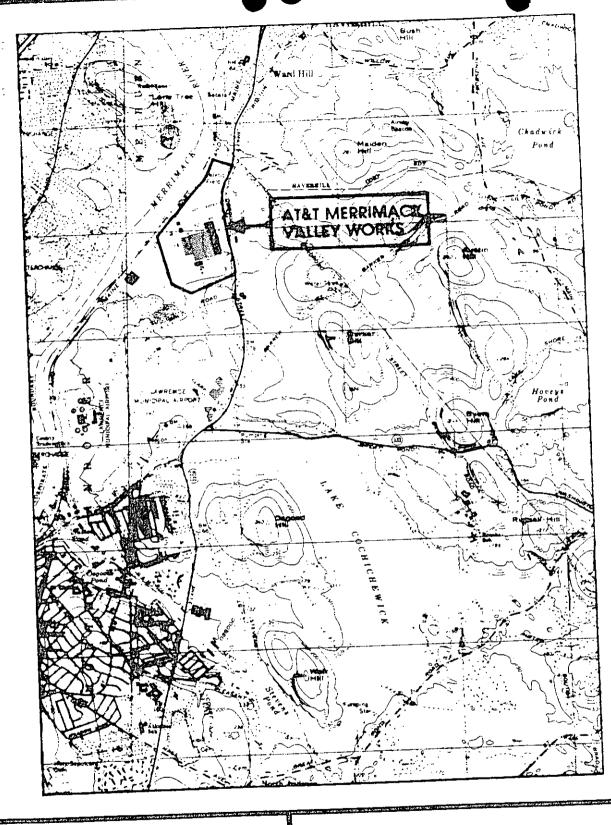
POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT

L IDENTIFICATION

01 STATE 02 SITE NUMBER

MA MADOO 1 005 370

HAZARDOUS CONDITIONS AND INCIDENTS			
01 Ø A GROUNDWATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED	02 D OBSERVED (DATE: 1/16/86 04 NARRATIVE DESCRIPTION	D POTENTIAL	. D ALLEGED
roundwater at the site is contami	nated with chlorinated and	nonchlorina	ted solvent
01 D B. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED	02 D OBSERVED (DATE) 04 NARRATIVE DESCRIPTION	AD POTENTIAL	O ALLEGED
o date, surface water and sedimen eveal the presence of VOCs, though	t complex to a	errimack Rive or such conta	er did not amination.
DI [] C. CONTAMINATION OF AIR DI POPULATION POTENTIALLY AFFECTED.	02 C OBSERVED (DATE	T. O. E. I.	
mere is the potential for volatily pears unlikely since the contaminuidings.	ization of VOCs into enclos nant plume is largely downg	ed spaces. " radient of t	However, i
1 D. FIRE EXPLOSIVE CONDITIONS 3 POPULATION POTENTIALLY AFFECTED. N/A	02 C OBSERVED (DATE	☐ POTENTIAL	O ALLEGED
DE DIRECT CONTACT POPULATION POTENTIALLY AFFECTED: N/A	02 CI OBSERVED (DATE) 04 NARRATIVE DESCRIPTION	D POTENTIAL	C) ALLEGED
I XD F. CONTAMINATION OF SOIL	02 [] OBSERVED (DATE: 5/1/86)	G POTTIME!	
1 in the former solvent tank fare this contaminated soil has been	04 NARRATIVE DESCRIPTION	D POTENTIAL	D ALLEGED
this contaminated soil has been idfill.	removed off-site to an appr	opriate haza	The bulk rdous wast
C G. DRINKING WATER CONTAMINATION POPULATION POTENTIALLY AFFECTED: N/A?	02 O OBSERVED (DATE) 04 NARRATIVE DESCRIPTION	D POTENTIAL	D ALLEGED
•	•		
☐ H. WORKER EXPOSURE/NURY	** • • • • • • • • • • • • • • • • • •		
WORKERS POTENTIALLY AFFECTED: N/A	02 () OBSERVED (DATE) 04 NARRATIVE DESCRIPTION	☐ POTENTIAL	□ ALLEGED
II. POPULATION EXPOSURE/INJURY	02 F) OBSERVED IN E /2 /05		
1 DI. POPULATION EXPOSURE/INJURY POPULATION POTENTIALLY AFFECTED:	02 D OBSERVED (DATE: _5/1/86) 04 NARRATIVE DESCRIPTION	☐ POTENTIAL	D ALLEGED


^	-7	24

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT

L IDENTIFICATION

IL HAZARDOUS CONDITIONS AND INCIDENTS (Company)	· · · · · · · · · · · · · · · · · · ·		
01 D J. DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION	02 D OBSERVED (DATE)	D POTENTIAL	D ALLEGED
N/A	•		
01 D K. DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION (Indiana namedia) of appearant	02 C OBSERVED (DATE)	D POTENTIAL	D ALLEGED
N/A			
01 D L CONTAMNATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	02 [] OBSERVED (DATE)	□ POTENTIAL	O ALLEGED
N/A -	•		
01 DM. UNSTABLE CONTAINMENT OF WASTES	02 O OBSERVED (DATE:	☐ POTENTIAL	D ALLEGED
03 POPULATION POTENTIALLY AFFECTED: N/A	04 NARRATIVE DESCRIPTION	1	ليا جنندني
01 CI N. DAMAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION	02 [] OBSERVED (DATE:)	D POTENTIAL	□ ALLEGED
N/A			
01 🗆 O. CONTAMINATION OF SEWERS, STORM DRAINS, WATES 04 NARRATIVE DESCRIPTION	02 D OBSERVED (DATE:)	[] POTENTIAL	□ ALLEGED
N/A			
01 EL P. ELEGAL/UNAUTHORIZED DUMPING 04 NARRATIVE DESCRIPTION	02 C OBSERVED (DATE)	D POTENTIAL	□ ALLEGED
N/A			~
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLEGE	ED HAZAROS		•
N/A			
L TOTAL POPULATION POTENTIALLY AFFECTED:			
V. COMMENTS			
DEQE has approved a groundwater reco of contaminated soils have been remo storage tanks at the site. As a res Investigation under CERCLA.	oved along with the majority	v of AT&T's	undergroun
. SOURCES OF INFORMATION (CON ABSOLUTE PRAVANCES & S. AERIO BIOL DES	Pipira armiyosa (reportas)		
(see Part 2, VI for citations)			

T&T MERRIMACK VALLEY WORKS
PHASE II HYDROGEOLOGIC
INVESTIGATION

Camp Dresser & McKee Inc.

FIGURE 1-1 SITE LOCATION

TABLE 2.2

CONCENTRATIONS OF VOLATILE ORGANICS
IN INDIVIDUAL PRODUCTION WELL SAMPLES

	·			Date of Sa		1 00 00
₹.hr	Compound	1/18/86	1/19/86	1/20/86	1/21/86	1/22/86
Production	1,1,1 Trichloroethane	29	29	36	37	33
Well 1 (in use at	Trichlorethene Trans-1,2-Dichloro-	97	113	119	126	119
time of	ethene	31	31	33	35	33
sampling)	1,1-Dichloroethene	3	3	_	-	_
-	1,1-Dichloroethane	-	1	_	_	4
	1,2-Dichloroethane 1,1,2,2-Tetrachloro-	_	-	_ °	-	-
	ethene	_	-	-	-	_
	Chloroform		-	_	_	_
	Tetrachloroethene	1	1	2	1	
	Methylene Chloride	-	1	-	<u> </u>	_
	Vinyl Chloride	_	-	15*	25*	_
Production Well 2			None De	tected o		
(in use)						···
Production	1,1,1 Trichloroethane	e 11	_	18	18	28
Well 3 (not in	Trichlorethene Trans-1,2-Dichloro-	139	-	106	93	96
use at	ethene	5	4	4	4	4
time of	1,1-Dichloroethene	_	_	20	21	26
sampling)	1,1-Dichloroethane	7	10	14	14	_
	1,2-Dichloroethane 1,1,2,2-Tetrachloro-	-	, -	_	_	-
	ethene	_	_	_	-	-
	Chioroform	_			_	-
	Tetrachloroethene	_	_	2	· -	2
	Methylene Chloride	-	_	_	_	_

^{*}Results of Method 624. All other results are from method 601/602.

J	Mus. Tade rea	i j i	j 1 1	1 1	AT & I PM	, 1 !	! ! ! t		! 1 -	and the
	SOMPLE DOTE:	MICROBIDIOLOGY Bact Funcal	PH TURB (COND PALK HALK	MINERALS Sodium Cl	FE PN	SILICA SULFATE CA	DRSANICS		
90N A 4/86	in .	<u></u>						1.9		•
CN B /86	li							1.7	and the second s	
DN C /86	in .		<u> </u>					1.6		
DN D /86) DI						<u> </u>	1.6		
N A	OUT							(1.0	b	·
34 B /85	: OLT		. 👌					(1.0	·	4.
N C 86	: OUT						,	(1,0		
ON 0 /86) OUT							(1.9		ь
HANCE 1/86	E BEFORE								NONE DETECTED	
HANCE 1/86	E OFTER						;		NONE DETECTED	
	BOTORE 1/14/86					16.5 0.70	100 -	624 N. D.	N.O.	
L 3 2/86						0.03 0.14	18		N.D.	na nac ar ar a
1 3	AFTER 1/11/05					0.69 0.22	18	624 H. D.		
	MATER CONTROL LA		*		AT LT ANALYSI		ي د و و موجد پر د د د د د د د د د د د د د د د د د د			
	SOFFILE DATE	NICROBIBIOLOGY BOCT FUNGAL	, PH TURB	CONO PALX HI	MINERALS ALK SODILM CL-	FE #	Y BILICA SUFATE CA	DRGANICS DRGANICS	VOA	reg on låde dukat el bed
	INCOMING MATER 1/16	O PENDING	6.2 0.1		34 25 11	3 0.62 (D./3 14 ID	24 4.4 (0.07 1.1		•
	WILE OCCUMIFICE	OHIOHITI 6			a si Ho Lie	,,	s	BORNING OF WINE FOR A COMPLETE OF BORNING BORN		
	A/D 21 FEED		6.4 0.6) PM 6	17 34	10 . 0.92	9, 0 9 19 12	• • • • • • • • • • • • • • • • • • • •	(D) (E)/L LTD://LD://DOI/D/://DE//LD://LD://LD://LD://LD://LD://	

C000001 A 01-5																	· · · · · · · · · · · · · · · · · · ·	·	. ====		
CARBON A OUT																(0.1					
TRANSPORTE STATE	BACT FUNGAL	PH	TURB	COND P	ALK	ALX	S001UH	Q-	FE)QN	SILICA	SULFATE '	· CA	AG C	HLORINE	TOC	VDA				
INCOMING MATER	. 78 PENDING	6.0	0.1	468	0	34	49	114	0.62	8.56		22	25.0	4.5	0.0	1.1 [,	601 , i, i trichlor		9		
PFTER DEGASIFIER	52 PENDING		···	· · · · · · · · · · · · · · · · · · ·	e come magne dans e e e	m.Ar. — d terramorrista	***************************************	· · ———	· , -		· 		·			TE	RICHLORDETHE Ransi2DCTHLOI IDICHLORDETH	POETHENE 1	_		
R/O 27 FEED 1/17		6.3	0.0	363	0	17	41	84	0.69	B. 69	12	32	15.0	3.0	0.0	1,	601 1,1TRICHLORO	ug/l Eth ane e	_	·	 -
R/O 27 REJECT)2006 PENDING	6.8	0.0	369	0	17	54	185	0.00	6. 69	16	46	20.0	3.5	0.0						
R/O 27 PRODUCT 1/17	889 PENDING	• • • • • • • • • • • • • • • • • • • •		· 	- - ·																<u> </u>
CARPON A IN		· • · • • • • • • • • • • • • • • • • •					- ·		-}							1.3					
CARBON B CLIT	• • • • • • •					· · — · -										11				- 	·
1/17																					
	BACT FUNGAL					TALK S		α-	FE	אמ	SILICA S	ULFATE	CA	NG D	LORINE 1	oc	VOA		···		
	BACT FUNGAL 60 PENDING				0	17	31	55	FE 0.01	0.88	BILICA S	16	1.5	2,5	0.0	.3 6	VOA 91/682 ANS12DICHLOR	U6/L		trois.	
ENCORING WATER	89 PENDING	*******	0.1	210	Č	17	31	55	0.01	0.63	12	16	1.5	2.5	0.9	.3 64 FR/ 1,1	01/682 Ansi2Dichlor Idichloroeth Thylene cilo Tracilorethe	UG/L Dethene 22 Ene 3 Ride 1			
INCORING WATER 1/16	89 PENDING	6.1	0.1	210	0	17	31	53	0.01	0.65	12	16	1.5	2.5	0.9	.3 66 TR/ 1,1 ME: TE1	01/682 Ansi2Dichlor Idtchloroeth Thylene cilo	UG/L DETHENE 22 ENE 3 RIDE 1 RE 1 ETHONE 27			
INCORING WATER 1/18 AFTER DEGASIFIER	69 PENDING	6.1	0.1	210	0	17	31	53	0.01	0.65	18	16	1.5	2.5	0.0	.3 64 TRI 1,1 ME TEI 1,1 TRI	01/682 ANS12DICHLOR IDTCHLOROETH THYLENE CILO TRACILORETHE I, TTRICILORO	UG/L DETHENE 22 ENE 3 RIDE 1 NE 1 ETHINE 27 E 78			625 N. D.
INCORING WATER 1/18 AFTER DESASIFIER 1/18 R/O 29 FEED	69 PENDING 9 PENDING	6.4	0.1	210 210 210	0	17	31	55	0.01	0.83	12	16	1.5	2.5	0.0	.3 64 TRI 1,1 ME TEI 1,1 TRI	01/602 ANS12DICHLOR IDICHLOROETH THYLENE CILLO TRACILLORETHES I, TTRICILOROETHESH ICHLOROETHESH	UG/L DETHENE 22 ENE 3 RIDE 1 NE 1 ETHINE 27 E 78			K2
INCORING WATER 1/10 AFTER DEGASIFIER 1/10 R/O 29 FEED 1/18	69 PENDING 9 PENDING	6.4	0.1	210	0	17	31	55	0.01	0.83	12	16	1.5	2.5	0.0	.3 64 TRI 1,1 ME TEI 1,1 TRI	01/602 ANS12DICHLOR IDICHLOROETH THYLENE CILLO TRACILLORETHES I, TTRICILOROETHESH ICHLOROETHESH	UG/L DETHENE 22 ENE 3 RIDE 1 NE 1 ETHINE 27 E 78			K2

(0,1,2,2) is then be obtained in (4).

51AGL 1/18		Ó 6	i. 5	9.8 47	75	0 17	,	78	٠ (ح	. 69 g.	. 83	29	: 28	25	4. 0	i ;		- 1 - to and a second
HELL 1 1/18		6.	0 1	9. 1 42	90	D 34	6	i4 11	15 8	.00 9.	72	14	23	25.0	3.5		1.2)	681/682 116/1
					 -	<u></u>					·	······						TRANS12DICHLOROETHENE 31
MELL 2	-	6.5		.2 156					,			···			-			TETRICAL ORDETHENE 1 1,1,1TRICAL ORDETHENE 29 TRICAL ORDETHENE 97
NETT 3	***			·						60 1.6	88 	10	14	15.0	2.0	6, 0	(5.1	NONE DETECTED TOTAL
(n)	r e de elect eres de					51 			l 0,	86 0.0	17	21	24	40.0	7.0	9. 0	,aj	681/682 UG/L 7
	· · · · · · · · · · · · · · · · · · ·	-	·				· 						······		1	<		TRONSIZDICHLOROETHENE 5 1, 101CHLOROETHENE 9 1, 1, 11RICHLOROETHENE 11
CARBON A IN 1/18				<u></u> -		·			-	·							J.3 _	TRICHLOROGETHENE 139
CARBON B DUT			* ***	· · · · · · · · · · · · · · · · · · · 			·	·	 -							,	"	625 N. D.
	BACT FUNGAL	, PH	TURB	COND	PALK H	AUK SO	MICH	<u>α</u> -	FE		CII ICA	O CO						
INCOMING MATER	# PENDING		8. 0	168	0	34	65 _	124	. 0.69	0.78	1	4 8	2 2	5. O	3.5	_ 0.0 _ 1	3	IDIO 1000CTUNE
AFTER DEGASIFIEN	3 PENDING	· · · · · · · · · · · · · · · · · · ·	<u></u>		······································	Andrew Court		The state of the s			r trade i r da ag			······································		·]] l; KE	RANSI DE LORGE TIENE 30 10 I DE LORGE TIENE 11
8/0 28 FEED	-	6.4	0.0	200	0	17	31	58	0. 69	0. 99	9		15		•			
8/0 28 SEJECT	769	6.6	0.0	675	0	34	169	132	0. 60	0. 23	27	48	45.			0.0		11/682 UE/L 624 625 , 1TRICHLOROETHINE . 6 N. D N. D
1/19		6.0	0.0	450	ė	34	77	130	9. 20	0.68	16	21	39.			0.0 0.0 1.		1/682 (16/1.)
				,				1.000000	· · · · · · · · · · · · · · · · · · ·	·· ·- <u></u>				•			1,11 TRA	DICH ORDETHANE I
						Straine is					********			••			ZI. METI Teta	OTOL DROETIENE 3 WILLE DRORIDE 1 WILLE URBEITENE 1
1/19	to see a seeman of the seed of	6.0)	0.0	159	•	34	18	 Ji (<u> </u>	1.66	01	14	15.0	2.0			TAIC	ITATION ORIETHINE 29 JACKETHENE 113
1/19	•	.6.2)	0.]	123	0	51	40	106 0). 45	0.07	8J	På	40.0	·		.0 (1,	. HIE	DETECTED TO TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO
	Marie and a second seco	· · · · · · · · · · · · · · · · · · ·		* · · · · · · · · · · · · · · · · · · ·	v. 					,	•	***	-		**************************************		1, 10.	IF FREE THE THE ATT A TO

	<u> </u>	1 1 - 1			7	. 0.] 18 -	1.5 H	1/682 UU/ 1/0010101 HONE (CHURDFORM 117 HETHYLENE DILORIDE 5	1/ 1/11	· · · :
8/0 28 PERMENTE		6.2 0.2	ద	_171	_7 0.00 0.00	6.5{111.7_		<u> </u>		
#/0 28 REJECT		6.6 6.0	460 0	17. <u></u> 19 1	16 0.600.00	17 30 30.0	3.50.0			
8/0 28 PRODUCT	. 639			<u> </u>	·		· · · · · · · · · · · · · · · · · · ·			 !
CARBON C IN		•		-			1.3	•	66	<u>د</u>
CARBON C OUT		·			•		(1			.0, ≾5
**************************************	Bact Funcal p	H TURB CC	NO PALK HA	LK _ S001UN _ Q.~ .		SILICA SULFATE CA	MG_ CHLORINE_TOC	V0A	N.	
		,	***************************************					681/682 LIG/L 1, 1010H.OROETHANE 3 TRANS1201CH.OROETHANE 24		
	·			Commercial Americans and an annual and an	- · · 	····	### # ** • • • • • • • • • • • • • • • •	1, 101CH DROETHENE 3 1, 1, 11RICH DROETHENE 28 TRICH DROETHENE 91		·· :
R/O 30 FEED 1/20	_	6.4 0.0	225	17 23 6	50 0.60 5.66	10 20 15.0	2.0 0.0	NONE DETECTED UG/L	624 625 N. D. N. C	. ,
VO 20 REJECT 1/20	948	6.7 0.0	759 0	34 100 22	. G. 60 G. 60	28 70 55,0	7.0 6.9			1. · · · · · · · · · · · · · · · · · · ·
1/50 ETT 2		6.3 0.9	425 0	51 46 18	0.23 0.07	24 Z 55.0	7.5 0.0 (1	601/602 UG/L 1,1010H.0ROETHPLE 14 - TRANSIZOICHLOROETHENE 4	624 625 16 9L0	
	, · · · · · · · · · · · · · · · · · · ·		·	• • • • • • • • • • • • • • • • • • • •		•		1,1DICHLOROETHENE 20 TETROCHLOROETHENE 2 1,1,1TRICHLOROETHENE 18	 	
CITY		7.1 0.3 .	. 100 <u></u> 0 <u></u>	34132	20.07 0.01 .	0.7 11 20.0 _	1.50.66		54 . 624 625	
	 	—						BROMODICALOROMETHYNE 16 - CREORIFORM 98 - METHYLERENE CHEORIDE 2	17 N.D 169)
R/O 30 PERMEATE		6.3 9.2	0	. 17 4	9 _ 0.03 _ 0.00 .	(0.5 (i 10.0	0.10.0		·	. !!
870-30 REJECT		5.6 0.0	430 0	17 69 12	6 0.00 0.00	18 38 45.0	. 4.5 0.0			
PTER DEGASIFIER	13	* 1	 · · · · · ·		Many of a Samuran () of Science	,				
1/20 30 PHEROLET	1						· · · · · · · · · · · · · · · · · · ·	ed por proper pr pr		!

Char 1-6	;	í	i i	ì	į	i	: i _ l		ا ر	ĵ į	i	j	Î	1 1	ł	a i	1 1	₹	ķ	į		6.0.*
1/28	·	် 5,9 _	0.0		0	34	64_ ·	_122_	6.60	0,64_	12_			_ 4.1_	9. C.	.1.6	601/602			19	}	. 625 N. D.
· · · · · · · · · · · · · · · · · · ·		f					•										TRICHLOROETHENE TETRACHLOROETHENE	119		47 2		
INSO PET S		5.4	0.0	125	0	17	15	29	♥ 0.64	1,40	8	14	° 11	8.0	0.0	1.6	691/682 N. D.			624 N.D.	2	625 N. D
MATER CONTROL LAB				· ···· ··· ···························			AT & T AN			5				· · · · ·			, , , , , , , , , , , , , , , , , , , ,			<u></u>		 '
S/MPLE DATE:	HICROBIOLOGY Bact Flangal	PH	TURB	CO/O			MINERALS	Q-	FE.		SILICA S		CA)46 C	LORINE	O _R i	GONICS CC VOA	1955461) Tres K g g g	1135¥3	
INCOMING MATER 1/21	6 PENDINS	6.0	0.0	460	0	17	52	110	8.82	0,68	.35	22	20	3.7	0.0	1,6	601/682 Trynsi2dichloroeth 111trichloroethyne		i			#851
					-			٠			·						TRICHLOROETHENE TETRACHLOROETHENE	116	i I			
R/O 28 FEED 1/21		6.4	0.0	485	0	17	57	116	9.69	0.69	12	46	20	4.0	8.0		601/602 111Trichlordethan	U6/L		624 N.D.		625 N.D.
R/O 28 REJECT	190 PENDING	6.6	0.0	1389	0	.; 17	, 194	375	(,6)	0.01	28 _	140 .	70 .	12.5_	0.0					· • • • •	··· ··· ·- ·	
R/O 28 PRODUCT 1/21	140 PENDING									*****				<u> </u>		··				- -		<u>.</u>
1/51			0.0	440	0	34	64,	126	0.69	, 9.68	14_	82		4.3_	<u>.</u> 0. 0.	_1.5_	601/602 Vinyl Chloride Trans1201chloroeth 111171chloroethane		5	୧୪ - ୧୪ - ୧୪ - ୪	} 	625 H. D.
•							,										TRICHLOROETHANE TETRACHLOROETHENE	121	6 —	- 55)	
NET 5 /	,	6.3	6.0	· 125	8	17	15	39	0.62	136	8	15	11	1.0	8.0	1.7	681/682 N. D.	U6/(624 N. D.	2	625 N. D.
· · · · · · · · · · · · · · · · · · ·	1								: '										<i></i> , .	. 4	.	,
1\SI)		6.3	. 6.6	483		51	41	165	9.20	•.07	29	26	35	7.0	0.0	(1	601/602 11D1CH DROETHENE 11D1CH DROETHENE 11D1CH DROETHENET	105/1 2 1		624 - 13 - 14)	625 N.D.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				·111 ** 1011	tel dess in philosophics		, is remarked desired as					·					A 15 FRICOR DIKOF THAVA THE IROCALE DROP THE NE		, ,	- 41 - 2		
CITY		6. 7	0.2	189	Ó	17	10	29	8.07	0 , DI	0.7 .	i£	10	2.0	0. 15		→ TREEM WHILE THE NE	(JIT/(624	. ,	ea l'

M/S PROEAT	F (F	1 =	0.0	g - 3	:	7 1	ř l		×	=	· (C2	17	=	0.0 =			4	•		
R/O 28 NEJECT STAGE 1 1/21		· 6.0	0.0	684	. 0	17	110	-97	0. 60	8. 83	22	88	40	7.0	0.0	·· ·	.			
CARSON A IN															1.3	· ·	U 6/L		625	
			·	·					· 	-				·			UG/L		N. D. 625	!
CAREON A OUT			రి	· 						·		•							N. D.	
	BACT FUGAL	PH	TURB	(0)0		H ALX SC		Q	ſξ	RY.	SILICA S	SUL FATE	CA .	MB CH	LORINE	TOC VOA		************		
INCONTRE WATER	IN PENDING	6.2	0.2	375	0	34	51	192	0.69	9.74	14	22	. 15	3.7	9.9 1.6	601/602 11DICHLOROETHONE	U6/L			;
			,													11D1CHLOROETHENE TRANS12D1CHLOROETH TETROCHLOROETHENE	13	The set of		
AFTER DEGASIFIER	• PENDING				**. —											111TRICHLOROETHENE TRICHLOROETHENE	89			
1/22 N/0 29 FEED		6.5	0. j	375	0	17	53	109	0. 29	O. 69	14	34	13	3.8	0.0	601/602/	U6/L	624	625	ļ. (
1/22	22	ſ							٧1 00	*		#1 _			VIV	111TRICHLORDETHANE		ALD.	N.D.	, i
		f	• •	,,=,,,,	~ * .			ţ,		•••				· · · · · · · · · · · · · · · · · · ·					<u></u>	: (
1/22	256 PEROTING	6.8	8.0	1689		17	286	429	ି ୬.છ ି	0.00	36	145	60	13.5	6.0	ngam ngama - Am magan ng al - 14 9 4 5				(
8/0 29 PRODUCT	9 PENDING			•.				•	<u></u> .	. •	•••••									
CFRECH A IN 1/22	··· · ·-· · · · · · · · · · · · · · · ·	*										·	·····		1.3		UG/L		625 N. D.	
	•			•																
CARBON A OUT 1/22									** **		<u></u>	····		**************************************						(
MELL 1 \ 1/22		6.4	0.1	450	0	34	61	121	0.01	0.64	14	22	15	3.6	9.0 1.6	601/682 1101CHLORDETHANE 180NS1201CHLORDETH	U8/L 4 ENE 33	}		
		_		. •												1111H1EH ORDETHAVE Tricia droethenc)	. 6	(
i(ss)		6.6	4.4	150	•		16	J1	6.4	1.10	10	14	1	1.6	0.0 1.3	u A	UG/L	7	16 . S. J.	
MOT 3		i	,, 0. l	, a		5I		. , IM	1.07	, , , , , , , , , , , , , , , , , , ,	P3	21	Pi	· 1	100 E4079 Weet W 10	**** * **** ***		,	1800	(
1/22		4.4	٧. ١	47.3		J1		196	1.41	4, 41	73	CI	(1	′	0.0 (1	folka: Diding begravely	73	7		C

					_	-	<u>-</u>	1.7 0.1	TRILLER INE - 100E - 10
1/22		7.2 0.1	180 0 17	18 472	0.62 9.60	0.9	15 8	1.7 0.1	681/682 U6/L DH.DRDF DRN
	•				•				BROMODICALOROMETHANE 17
R/O 29 PERVEATE 1/22		6.7 0.8	25 0 17	3 4	8.00 0.00	0.8	(1 0.4	0,1 0.6	
R/O 29 REJECT STAGE 1 1/22		6.6 0.0	825 0 17	111 158	0.69 0.69	26	85 30	6.5 0	
	erann s serven e			** ****	,				
	•								
MATER CONTROL LAD			ุคา	T & T ANALYSIS					
SOMPLE	DATES: 2/4/86	2/5/66	ULTS (COLONTES /IML) 2/6/86		2/7/66				252961411C144444144440000004444444444444
CARBON BED OUT	36	50	67	 	45			 	
RRISON SETO OUT)2001	12608	115	<u> </u>	68				
AREACH BED OUT)2000	12000	270		36			 	
CARBON SED OUT	1283) 2030	178	•	53				
28 Breks out	20	ं श	107		38				
25 Breaks out	85		20 ,		29				
30 BONKS OUT	69	110	ស	•	34				
GASSIFIER IN	1368	NO SWOLE	13		9			·····	
SASSIFIER OUT					15				
TED BED OUT	i io	: 270	0		. 1	-			
LTERED TRAK OUT		HD SOUPLE		 ,	0				
\$1HK		110	230		380				e address destructions and extension of extension of the contract of the contr
BEDS OUT -	879	1900	. 92		150				
LITERED WATER COLY	NO SAMPLE	NO STAPLE	9		s				
SAVALE DATE	**************************************	OR 601/602 RESULTS (UG	/ (1)						
MCONING 2/4/85	601	UG/L DROFTOWNE E	SAR WALL				1	,	

. 2/4/65

1, IDIDEGRAF DEME

SITE 1: THE TANK FARM ORGANIC VAPOR SCREENING DATA

Tank Area Site 1	Boring Number P3-B1	Depth (ft) 0- 2.0 2- 4.0	HNU READINGS (ppm) 0
•		4- 6.0 6- 8.0 8-10.0	0 0 0
	P3-B2	0- 2.0 2- 4.0 4- 6.0 6- 8.0 8-10.0 10-10.5	3.0- 5.0 0.0-20.0 1.0- 1.5 3.0- 5.0 10.0-15.0
	P3-B3	0- 2.0 2- 4.0 4- 6.0 6- 8.0 8-10.0 10-12.0 12-12.5	0 0 0 0.0- 0 0 0
	P3-B2	0- 6.0 6- 8.0 8-10.0 10-12.0 12-13.5	0 0 0.0- 0.5

The highest concentrations of organic vapors detected was 20 ppm using the HNu.

One soil sample from the area that exhibited the most contamination in the field was submitted for laboratory analysis. Results of extended Method 624 analysis indicated concentrations of volatile organics in the soil totalling less than 25 ppb. It is evidenced in this case, and is confirmed by past experience, that organic vapor concentrations measured in the field can be orders of magnitude greater than concentrations in the soil as measured in the laboratory.

SITE 2: THE GASOLINE FILL STATION

e e

The soil sampled and screened in the field from three borings encircling the gasoline tank demonstrated no significant contamination in the unsaturated zone.

SITE 2: GASOLINE FILL STATION ORGANIC VAPOR SCREENING DATA

Tank	Boring	Depth	HNU READINGS	
Area	Number	<u>(ft)</u>	(ppm)	-
Site 2	P2-B1	0- 6.0	-	
		6- 8.0	0	
	•	8-10.0	0	
		10-12.0	0	
		12-14.0	0	
			•	
	P2-B2	0- 1.0	-	
		1- 4.0	0	
		4- 6.0	0	
		6- 8.0	0	
		8-10.0	0	
		10-11.5	0	
	P2-B3	0- 1.0	_	
		1- 4.0	_	
		4- 6.0	0	- 47
		6- 8.0	0	
		8-10.0	0	
	•	10-12.0	0	
		12-18.0	0	

SITE 3: THE WASTE ACETONE TANK

Significant levels of acetone were detected in the soil around the waste acetone tank. In one boring, the HNu read up to 500 ppm (peak value). The results are tabulated below:

SITE 3: WASTE ACETONE TANK ORGANIC VAPOR SCREENING DATA

Tank Area	Boring Number	Depth (ft)	HNU READINGS (ppm)
			-0
Site 1	W2-B1	0- 2.0	0
		2- 4.0	0
	•	4- 6.0	0
		6- 8.0	10.0- 40.0
		8-10.0	0
		10-12.0	40.0- 50.0
		12-14.0	0.0-300.0
		14-16.0	50.0-500.0
		16-18.0	150.0-200.0
		18-20.0	50.0
	W2-B2	0- 2.0	0
		2- 4.0	0
		4- 6.0	0
-7 ()		6- 8.0	0
*-d,>		8-10.0	. 0.0- 15.0
		10-12.0	5.0- 10.0
		12-14.0	0.0- 7.0
		14-16.0	5.0- 15.0

TABLE 2

VOLATILE ORGANIC CONCENTRATIONS IN GROUNDWATER

may - June 1987

			AR 1	ৰত চ	3D T	45 [4D	- 3S T	3D T	65	6D T	75	70	85	\$D	95				112	110	I to S	I to 5	100
WELLTID	$\frac{1D}{1}$	2S	$\frac{210}{100}$	35	10	10	10	1 10 3	10	10	50	1 10 5	10	10	1 10 5	10	10	25	10	10	10	1103	1103	- "
DETECTION LIMIT (ppb)	1 10 5	10XXXX	10	25	-10	-10-				 -													 	1
										-	 }												 -	
CHLOROMETHANE																			المقيدا				} -	⊢
BROMOMETHANE						438												60	498				 - '	
VINYL CHLORIDE						470												l	<u> </u>		-		 -	⊣
CHLOROETHANE																		<u> </u>					 -	╁──┤
METHYLENE CHLORIDE						}			t									Ļ		 		ļ		╂╼╼┥
TRICHLOROFLUOROMETHANE				73		36		4.6			135							<u>L.</u>		 		 	┼──	
I I-DICHLOROETHYLENE				13	36	39		2.5	11		218						24	25	21	ļ			10	┼──┤
T TOTOLI OROFTHANE			11		30	75		12			120			12				322	274				1-10-	┼─┤
TRANS-1, 2-DICHLOROETHYLENE													30			11	<u> </u>	!	<u> </u>	ļ <u>.</u>		 	 	╁╼╌┦
CHLOROFORM																<u> </u>		ļ. <u></u>	├			 -	1 8	} -
1 2 DICHLOROETHANE		47,200	14	468						39				12			21	28	 	├─-		 	 -	+
TOTAL CHLOROETHANE		47,200	1-14	400										L	<u> </u>	<u> </u>	<u> </u>	 	├ ─	├		├	┼	1
CARBON TETRACHLORIDE		ļ <u> </u>												<u> </u>	^_	<u> </u>	ļ <u>.</u>	}	}	 	}	 	┼	
BROMODICHLOROMETHANE		ļ <u>.</u>		-										<u> </u>	ેઈ	<u> </u>	 	├ ─	—	├-	}	 	+	+
T. 2-DICHLOROPROPANE	ļ		 			-		-						 	<u> </u>		100	1312	102	95	 	╁	37	41
TRANS-13-DICHLOROPROPENE	 	67,330	47	198		91			16		595		<u> </u>	22	<u> </u>	87	25	413	102	173	 	┼┈┈┈	+	1
TRICHLOROETHYLENE	 	01,00		1		1				Ī.,_			<u> </u>	 	↓	├	 	├	┼		╁──	 -		+
DIBROMOCHLOROMETHANE	 	 	 	-		 							<u> </u>	↓	 	↓—	}—	 			┼─	 -	 	176
CIS-1, 3-DICHLOROPROPENE	 	 	 	 	1								ļ	↓	├		├-	} —	+	┼	┼┈	 -	1	-6
I, I, 2-TRICHLOROETHANE	 		1		 								 	↓	 	┼	┼—	╁─╌	+	+	+	 	+	1
BENZENE	 		 		—						<u> </u>	<u> </u>	<u> </u>	ļ	 	↓ -	╁	╅	┪	1	┼	┼─	1	1
2-CHLOROETHYLVINYLETHER	 		1-	1	 					<u> </u>	l	<u> </u>	 		 -	-}	11		+	╂━-	┼	 	 	1
HROMOFORM				30	<u> </u>					<u> </u>		<u> </u>	<u> </u>	_	 	↓	 ' -	+		┼─~	+	 	- -	1
I, I, 2, 2-TETRACHLOROETHYLENE	 -	 	 	 	1	1	1					<u> </u>	↓	↓	 	-∤	┼	+	+-		┼		 	1-
1, 1, 2, 2-TETRACHLOROETHANE	 	94,170	1	1	1	1				1	<u> </u>	<u> </u>	.	. 	 		┼		-├	┼	┼─	+		1
TOLUENE	 	1-73,170	 	1	 	1	1					<u> </u>	 	 	 			+-	-├	+	┪	 -		1
CHLOROBENZENE	 	 	+	1	1	1	1				<u> </u>	<u> </u>	↓		 -	+				┼	+	 		+-
ETHYLBENZENE	 	+	+	 	 	1	1				<u> </u>	<u> </u>	1	 	1 775	98	-	4 P	1 80	1 0 2	ੀਨਾ	1 ND	75	41
77.70	ND	208,700	72	769	36	677	חא	19	27	39	1068	Q N	30	46	מאן	1 7 8	101	100	7 0 7	تنبك	11.0			
TOTAL VOLATILES	1	12001,00																				A		

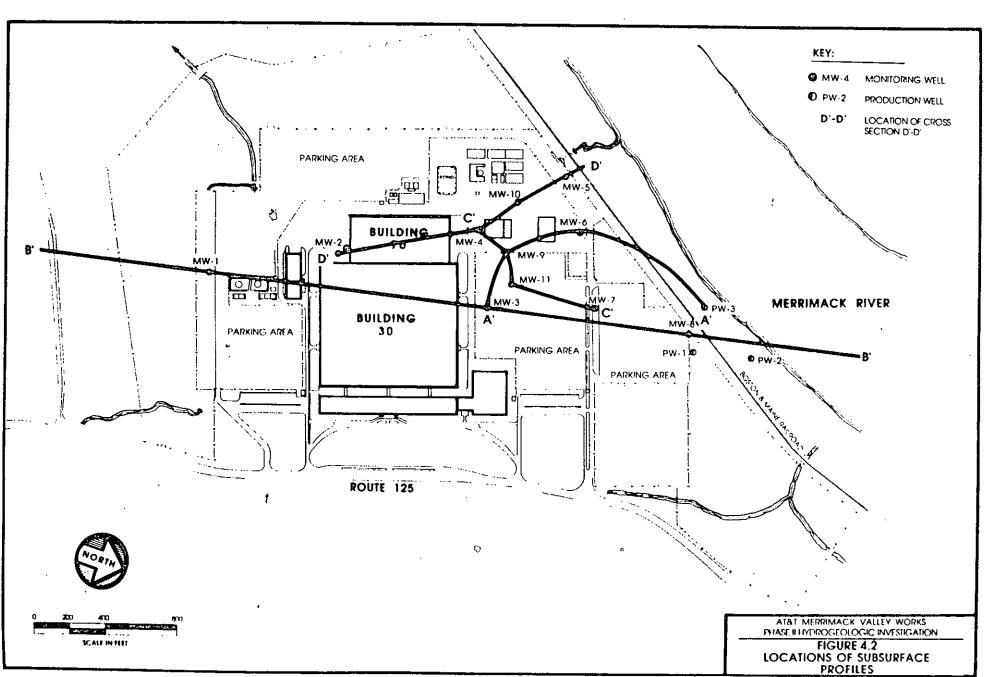
EPA methods Goi 602 or GZY Aralysis

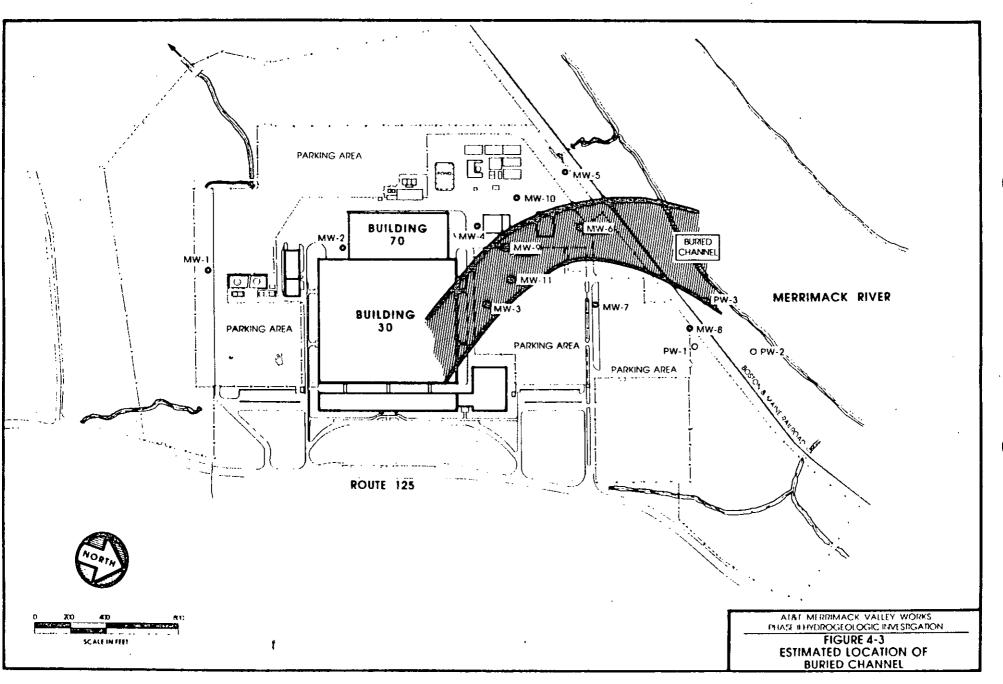
APPENDIX IV

UNDERGROUND STORAGE TANKS AT THE MERRIMACK VALLEY WORKS

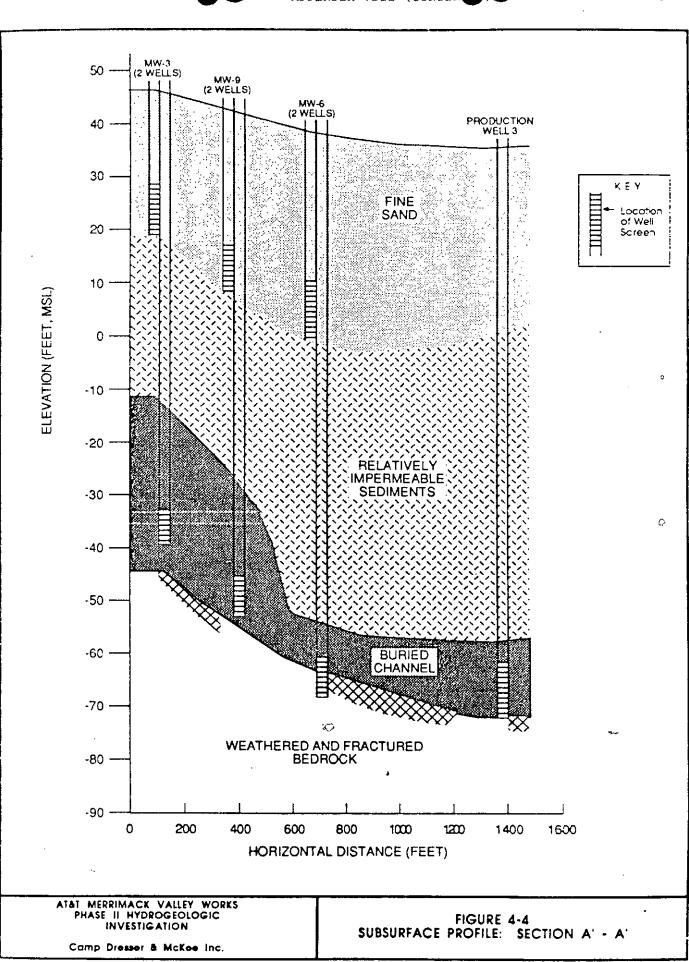
TANK LOCATION ¹	TANK CONTENTS	TANK STATUS
	NEW PRODUCTS:	
1	AMMONIA ETCHANT	IN USE; TO BE REMOVED IN 1988.
2	GASOLINE*,	REMOVED AND REPLACED WITH A NEW
		UNDERGROUND TANK IN 1986.
.2	DIESEL	INSTALLED IN 1986.
3 3 3 3 3 3	METHYL CHLOROFORM*	REMOVED IN 1986-87.
3	METHYL CHLOROFORM*	REMOVED IN 1986-87.
3	METHYL CHLOROFORM*	REMOVED IN 1986-87.
3	TRICHLOROETHENE*	REMOVED IN 1986-87.
3	ACETONE*	REMOVED IN 1986-87.
3	ACETONE*	REMOVED IN 1986-87.
3	TOLUENE*	REMOVED IN 1986-87.
3	VARSOL*	REMOVED IN 1986-87.
3	VARSOL*	REMOVED IN 1986-87.
4	CAUSTIC SODA	REMOVED IN 1985.
4	CAUSTIC SODA	REMOVED IN 1985.
	WASTE PRODUCTS:	
1	SPENT AMMONIA ETCHANT	IN USE; TO BE REMOVED IN 1988.
i	SPENT AMMONIA ETCHANT	IN USE; TO BE REMOVED IN 1988.
i	BRULIN	IN USE; TO BE REMOVED IN 1988.
i	SPENT ELECTROLESS COPPER	
•	PLATING SOLUTION	IN USE; TO BE REMOVED IN 1988.
4	GENERAL WASTE	REMOVED IN 1985.
4	CONCENTRATED CYANIDE WASTE	REMOVED IN 1985.
5	WASTE SOLVENT*	REMOVED IN 1986.
6	WATER AND ACETONE*	CLEANED, FILLED WITH GROUT IN 1986.
6	SPILL-RUNOFF OF FLAMMABLE MATERIAL IN BLDG. 34.	IN USE.
7	WASTE MINERAL OIL*	REMOVED IN 1987.
8	WASTE OIL*	REMOVED IN 1987.
8	NO. 6 FEUL OIL ("DAY TANK")	IN USE.
8 .	ETHYLENE GLYCOL	OUT OF USE.; TO BE REMOVED IN 1988.
<u> </u>		

^{*} THESE TANKS WERE REMOVED / FILLED WITH GROUT WITH THE ASSISTANCE OF CDM IN PHASE II.

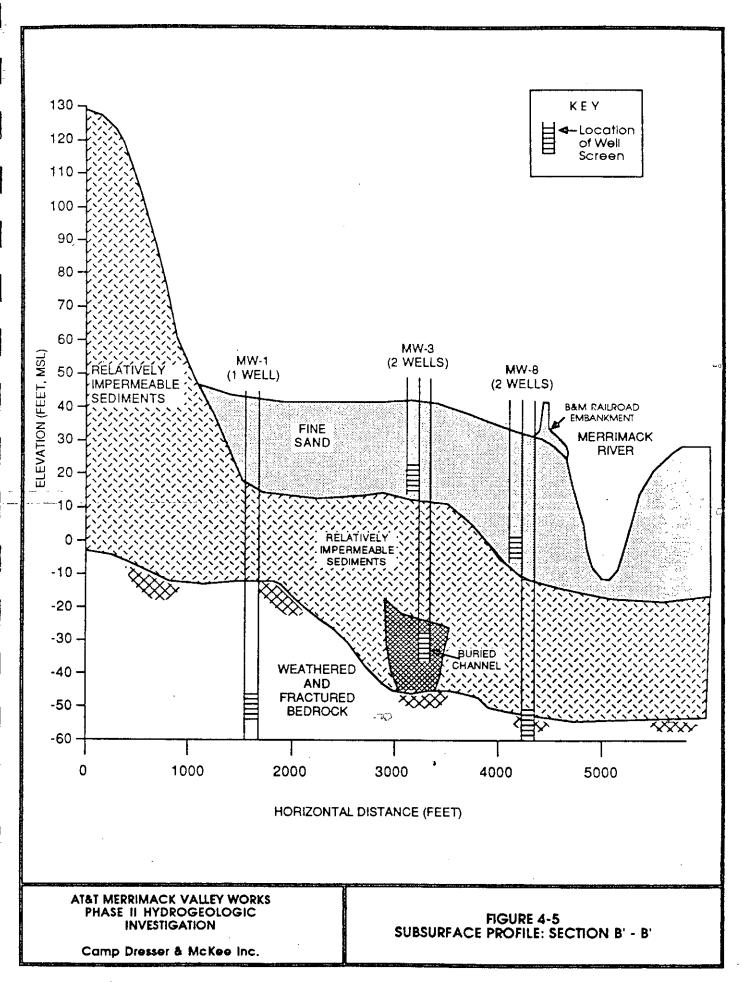

APPENDIX VI

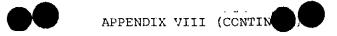

TABLE 4-1 MONITORING WELL CONSTRUCTION DATA

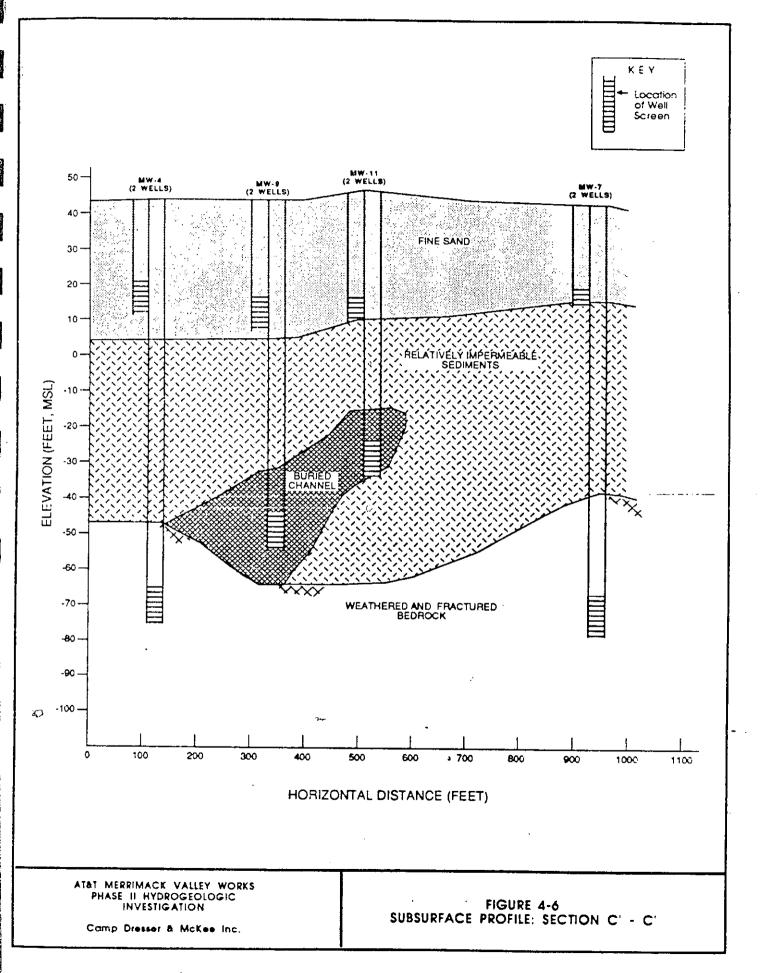
WELL I.D.	DATE INSTALLED	ELEVATION OF WELL TOP (FT,MSL)	SCREEN TOP BOOK (FT, MS.	OTTOM	WELL DIAM. (IN)	BORING DIAM. (IN)	FORMATION SCREENED	
SHALLOY MW - 2S MW - 3S MW - 4S MW - 5S MW - 6S MW - 7S MW - 7S MW - 8S MW - 9S MW - 10S MW - 11S	5/20/86 5/22/86 5/21/86 5/27/87 7/ 1/86 5/23/86 5/23/86 5/28/86 5/21/87 5/18/87 5/20/87	43.30 47.66 43.38 31.40 39.80 42.44 31.26 42.79 33.03 45.49	28 29 21 14 10 18 5 15 25	18 19 11 9 0 13 -5 5 20	2 2 2 4 4 2 2 4 4 4	6 6 6 13 6 6 13 13	SA SA SA SA SA SA SA SA SA	
DEEP WE MW - 1D MW - 2D MW - 3D MW - 4D MW - 5D MW - 6D MW - 7D MW - 8D	6/27/86 6/18/86 6/17/86 6/24/86 6/24/86 6/30/86 6/20/86 5/19/86	46.80 42.94 47.30 42.88 31.19 39.48 42.07 31.28 43.03	-42 -39 -28 -66 -79 -56 -67 -50 -45	-52 -49 -38 -76 -89 -66 -77 -70	4 4 4 4 4 4 2 4	6 6 6 6 6 6 6	BR BR BC BR BR BC-BR BR BR BR	
MW - 9D MW - 10D MW - 11D		33.16 45.45	-25 -24	-35 -39	4 4	6 6	BR BC	

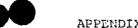

KEY:

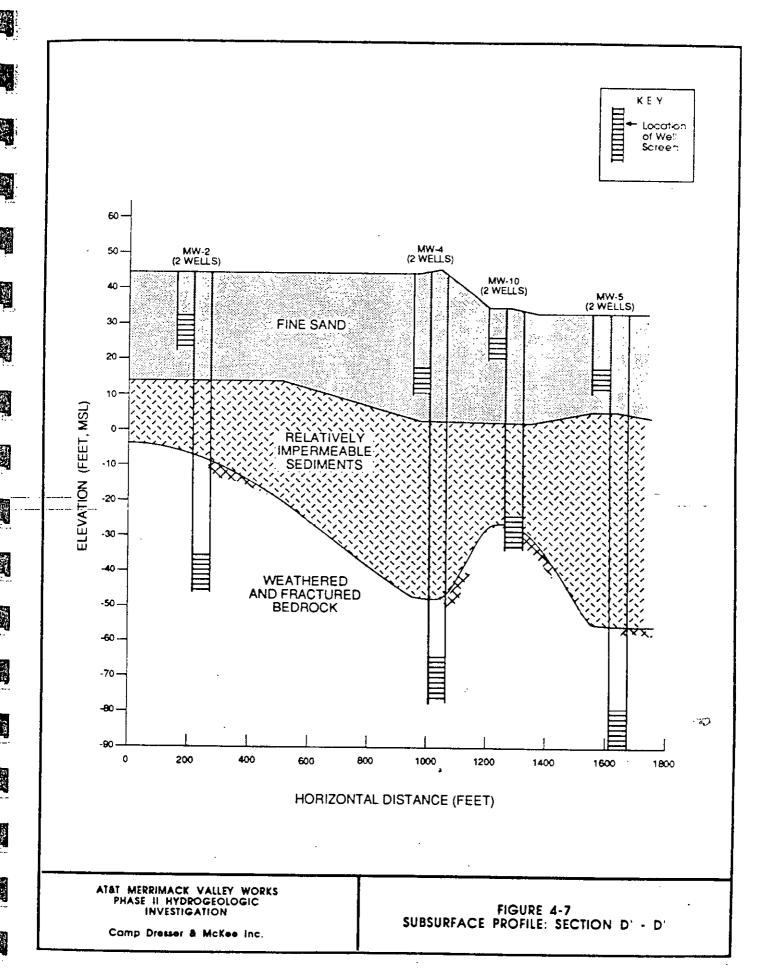
BR = WEATHERED BEDROCK BC = BURIED CHANNEL SA = SURFICIAL FINE SAND

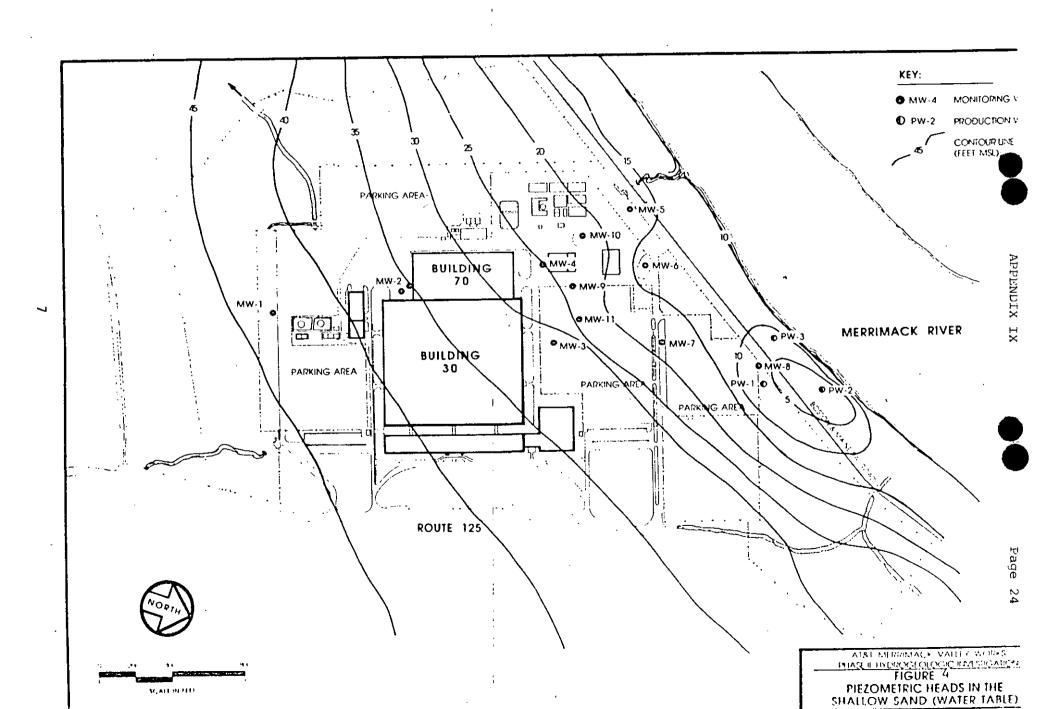


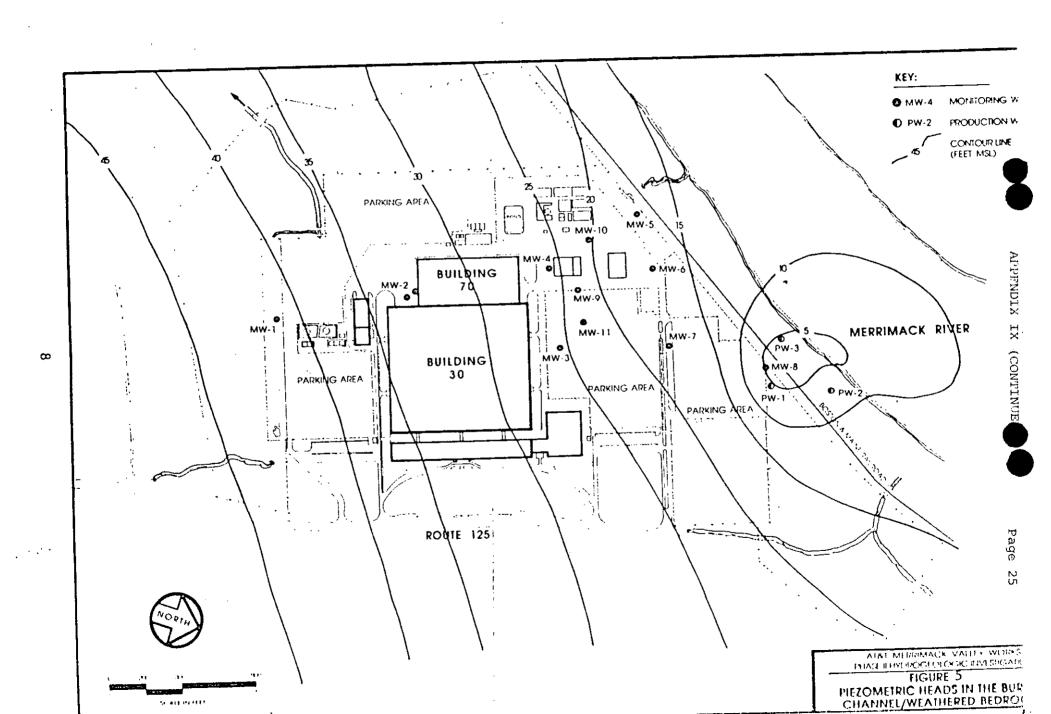


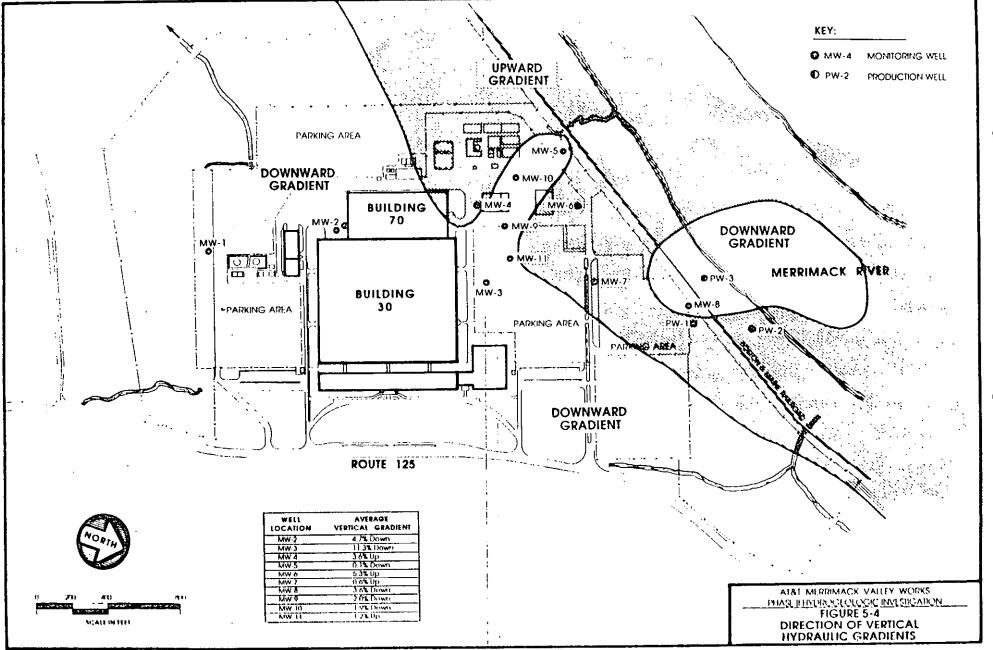

Q

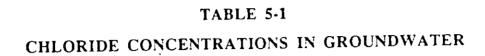


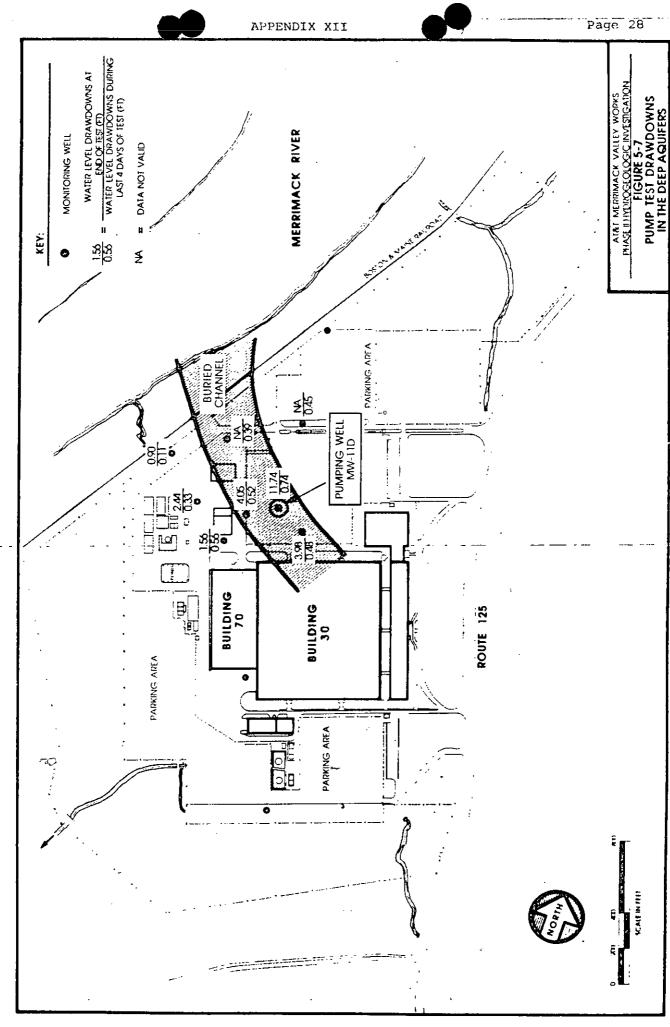






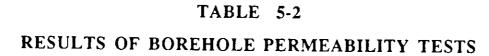






CHLORIDE CONCENTRATION (mg/l)

SAMPLING TIME ⁽²⁾	SURFICIAL FINE SAND	BURIED CHANNEL	DEEP TRANSITION ⁽¹⁾	WEATHERED BEDROCK
			0	
SUMMER 1986	67 - 2700	100 - 350	•	2.3 - 7.5
RANGE		197	43	5.1
AVERAGE	726	177		
SUMMER 1987				
RANGE	46 - 2600	110 - 550	55 - 500	2.4 - 25
AVERAGE	900	246	278	10.3


NOTES:

- (1) Monitoring Wells MW-5D and MW-10D are referred to as Deep Transition wells because they are screened in bedrock, but have chloride concentrations more typical of the buried channel.
- (2) All wells installed in 1986, and the three production wells, were analyzed for chlorides in the summer of 1986. All wells installed in 1986 and 1987, and the production wells, were sampled and analyzed for chlorides in the Summer of 1987, with the exception of MW-2S and MW-2D. See Table 4-1 for monitoring well installation dates.

Page 29

FORMATION	HYDRAULIC CONDU RANGE	CTIVITY (FT / DAY) AVERAGE	
SURFICIAL FINE SAND	0.1 - 8.9	3	
BURIED CHANNEL	7.5 - 22.6	17	
WEATHERED BEDROCK	0.2 - 3.0	1	<u> </u>

mAD987547317

AT AT, North Anderer

MA DEQEPA 9/29/88

corrent states N- RCRAFSDF 4/26/90 Dudy